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Implicit Monte Carlo [2] can dominate com-
pute time in multiphysics simulations. This com-
putational demand is made worse when the work-
load is not balanced between parallel processes.
The standard method decomposes the spatial do-
main and passes particles between parallel pro-
cesses. In the standard method, the load imbal-
ance is proportional to the particle work imbal-
ance, which can be large when an energy-based
source strategy is used. A variant of the “data
servers” model from neutronics is used to allow
particle work to be decomposed independent of
spatial and physical data. This method is called
mesh passing. Mesh passing performs compara-
bly to particle passing on load balanced problems
and shows substantial improvement on problems
with particle load imbalance. The amount of data
held in a mesh cell does not significantly impact
the scaling behavior, meaning that parallel IMC is
likely bound by network latency and not network
bandwidth.

Background and Motivation
In thermal radiative transfer (TRT) energy

emitted from a material is is proportional to tem-
perature to the fourth power. This means that
small spatial gradients in temperature can lead to
relatively large spatial gradients in emission en-
ergy. The Implicit Monte Carlo method solves the
TRT equations by simulating photon particle his-
tories with pseudorandom numbers. If particles
are made to represent equal amounts of emission
energy (energy-based source strategy), the large
spatial gradients in emission energy translate di-
rectly into large spatial gradients in particle den-
sity. In parallel simulations where the mesh is
decomposed, parallel processes may have a dras-
tically different number of particles to simulate.

As these simulated particles move off of the mesh
owned by a parallel process some kind of paral-
lel communication is necessary. In current IMC
codes, the particle is buffered with other particles
and then passed to the parallel process that owns
the mesh needed by these particles. This method
is effective if the particle count is balanced across
ranks but requires advanced methods of selective
replication if the particle load is not balanced.

Description/Impact
Instead of passing particles that move out of a

subdomain, the processor that owns the particle
could request the mesh data needed by that par-
ticle. This is similar to the “data server” model
in neutronics. This data server model has been
used for spatial data in simple neutronics simula-
tions [3] and to handle tallies in large nuclear re-
actor simulations [1]. In the current implementa-
tion of this model, which we call “mesh passing,”
mesh data is requested directly from the processor
that owns the mesh data. This model allows a par-
allel process to simulate particle histories regard-
less of the spatial location of the particle. Parti-
cles can then be evenly distributed between paral-
lel processes.

Heat map of data requested in parallel IMC with
data servers.

CCS-2, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory

http://www.lanl.gov/science-innovation/basic-research/computing/computer-computational-statistical-sciences/computational-physics-methods/index.php


Parallel IMC and Simple Load Balancing with the Data Server
Model

26 27 28 29 210 211

cores

26
27

28

29

210

211

sp
e
e
d
u
p

Ideal Strong
Mesh Passing
Mesh Passing RMA
Gray
10 Groups
50 Groups
100 Groups

Scaling of the data server model with various cell
data sizes

Anticipated Impact
The mesh passing method is performs well

when the medium is optically thick or when the
timestep size is small. If either of those condi-
tions are true, mesh passing should scale well re-
gardless of particle load imbalance. The perfor-
mance also relies on the effectively overlapping
mesh communication with particle work. If these
demands are met, the mesh passing method could
drastically improve load imbalance problems in
parallel IMC without the need for selective repli-
cation or work functions. Initial work shows that
increasing the amount of data in a cell by a factor
of one hundred (as in large multigroup simula-
tions) only decreases scaling efficiency by about
10%. The promising results thus far do not in-
clude recent optimization in one-sided messaging
in MPI 3.0 or in MPICH on Ares networks.

Path Forward
The mesh passing method has been imple-

mented in a mini-app called Branson with two-
sided MPI messaging and passive, one-sided MPI
messaging. The method is currently being eval-
uated on a wide range of physical and algorithm
parameters. We hope to use Branson to show the
need and utility of fast one-sided RMA operations
in future architecture procurements. Branson is
open-source and available at https://github.
com/lanl/branson.
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